animal learning

zoology
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/animal-learning
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

animal learning, the alternation of behaviour as a result of individual experience. When an organism can perceive and change its behaviour, it is said to learn.

That animals can learn seems to go without saying. The cat that runs to its food dish when it hears the sound of the cupboard opening; the rat that solves a maze in the laboratory; the bird that acquires the song of its species—these and many other common examples demonstrate that animals can learn. Yet what is meant by saying that animals can learn? What, in other words, is learning? This question proves exceedingly difficult to answer, and, in fact, some theorists propose that no single, all-encompassing definition of learning is at all possible. Moreover, a moment’s reflection yields the realization that there exist different kinds of learning. The learning of number concepts, for example, surely seems to be of a different nature than the learning of the association between the sound of a cupboard door and the receipt of food. To explore animal learning, then, this article first considers what learning is and is not and then examines in detail some of the specialized types of learning that occur in animals.

The general nature of learning

Many animals live out their lives following fixed and apparently unvarying routines. Among numerous species of solitary insects, for example, the life cycle consists of the following unvarying events: the females lay their eggs on a particular plant or captured prey; the newly hatched larvae immediately start eating and then follow a standard sequence of developmental stages; the adults recognize appropriate mates by a set of fixed signs, perform a fixed sequence of mating responses, provision their eggs with suitable nourishment, and finally die before the next generation hatches. The same unchanging sequence is repeated generation after generation. And it is, of course, eminently successful. The same set of responses is invariably elicited by the same set of stimuli, because those responses were, and continue to be, adaptive. Where circumstances do not change, there is little need for an animal’s behaviour to change. Even many aspects of the behaviour of mammals show a similar fixity. A dog withdraws its foot if it is pricked and a young child his hand if burned; both people and rabbits blink whenever an object is moved rapidly toward their eyes; the feeding behaviour of young infants of virtually all mammalian species consists of sucking elicited by contact with the lips.

Whenever the same response is always appropriate in a particular circumstance, there is little reason why an animal should need to learn what to do in that circumstance. But the world is not always so stable a place. The food supply that was plentiful yesterday may be exhausted today, and the foraging animal that always returns to the same spot will starve to death. Moreover, a particular food supply may be temporarily depleted but will be replenished if left long enough; the successful forager needs to remember where the supply was and when it was last visited, so as to time a return to advantage. In other words, circumstances may change, and the same response is not always appropriate to the same stimuli. Knowing what behaviour is appropriate may depend, therefore, on keeping track of past events.