Physical properties

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/cluster
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Liquid and solid phases

Clusters share some of the physical properties of bulk matter, a few of which are rather surprising. Clusters of all substances except helium and possibly hydrogen are solidlike at low temperatures as expected. The atoms or molecules of a cluster remain close to their equilibrium positions, vibrating around these positions in moderately regular motions of small amplitude. This is characteristic of all solids; their atoms are constrained to stay roughly in the same position at all times. In a liquid or a gas, the atoms or molecules are free to wander through the space accessible to the substance. A gas or vapour has so much empty space relative to the volume occupied by the particles that the particles move almost unhindered, colliding only occasionally with other particles or with the walls of the container. A liquid is typically almost as dense as a solid but has some empty spaces into which the atoms or molecules can easily move. Hence, the particles of a liquid can diffuse with moderate ease. (Water is an exception; its density as a liquid is higher than its density as ice, because ice has an unusually open structure in comparison with most solids, and this open structure collapses when ice turns to water.) Clusters can be liquidlike if they are warm enough, but typically the temperatures at which clusters can become liquid are much lower than the melting points of the corresponding bulk solids. If temperatures are measured on the Kelvin scale, small clusters become liquidlike at temperatures of roughly half the bulk melting temperatures. For example, solid argon melts at approximately 80 K, while small clusters of argon become liquid at about 40 K.

Some clusters are expected to show a gradual transition from solidlike to liquidlike, appearing slushy in the temperature range between their solidlike and liquidlike zones. Other clusters are expected to show, as seen in computer simulations, distinct solidlike and liquidlike forms that qualitatively resemble bulk solids and liquids in virtually every aspect, even though they may exhibit quantitative differences from the bulk. Solid clusters, for example, show virtually no diffusion, but the particles of a liquid cluster can and do diffuse. The forces that hold a particle in place in a solid cluster are strong, comparable to those of a bulk solid; but those in a liquid cluster include, in addition to forces comparable in strength to those in solids, some forces weak enough to allow a particle to wander far from its home base and find new equilibrium positions. Those same weak forces are responsible for making a liquid cluster compliant; that is, weak forces allow the liquid to accommodate any new force, say, a finger inserted into water. Ice will not yield to such an intruding force, but when a finger is placed into liquid water, the water molecules move aside under the force of the finger. This is much like the behaviour of a bulk liquid. The greatest differences between bulk solids and liquids and solid and liquid clusters arise from the fact that a large fraction of the particles of a cluster are on its surface. As a result, the particle mobility that characterizes liquids and enables them to exhibit diffusion and physical compliance is enhanced in a cluster, for the cluster can easily expand by enlarging the spaces between particles and can also transfer particles from its interior to its surface, leaving vacancies that enhance the mobility of the interior particles. The large surface area, together with the curved shape of the cluster’s surface, make it easier for particles to leave a cluster than to leave the flat surface of a bulk liquid or solid. An important consequence is that the vapour pressure of a cluster is higher than the vapour pressure of the corresponding bulk, and accordingly the boiling point of a liquid cluster—i.e., the temperature at which the vapour pressure of a liquid is equal to the pressure of the surrounding atmosphere—is lower than that of the corresponding bulk liquid. The vapour pressure of clusters decreases with increasing cluster size, while the boiling point increases.

Perhaps the greatest difference between clusters and bulk matter with regard to their transformation between solid and liquid is the nature of the equilibrium between two phases. Bulk solids can be in equilibrium with their liquid forms at only a single temperature for any given pressure or at only a single pressure for any given temperature. A graph of the temperatures and pressures along which the solid and liquid forms of any given substance are in equilibrium is called a coexistence curve. One point on the coexistence curve for ice and liquid water is 0° C and one atmosphere of pressure. A similar curve can be drawn for the coexistence of any two bulk phases, such as liquid and vapour; a point on the coexistence curve for liquid water and steam is 100° C and one atmosphere of pressure. Clusters differ sharply from bulk matter in that solid and liquid clusters of the same composition are capable of coexisting within a band of temperatures and pressures. At any chosen pressure, the proportion of liquid clusters to solid clusters increases with temperature. At low temperatures the clusters are solid, as described above. As the temperature is increased, some clusters transform from solid to liquid. If the temperature is raised further, the proportion of liquid clusters increases, passing through 50 percent, so that the mixture becomes predominantly liquid clusters. At sufficiently high temperatures all the clusters are liquid.

No cluster remains solid or liquid all the time; liquidlike clusters occasionally transform spontaneously into solidlike clusters and vice versa. The fraction of time that a particular cluster spends as a liquid is precisely the same as the fraction of clusters of that same type within a large collection that are liquid at a given instant. That is to say, the time average behaviour gives the same result as the ensemble average, which is the average over a large collection of identical objects. This equivalence is not limited to clusters; it is the well-known ergodic property that is expected of all but the simplest real systems.

Electric, magnetic, and optical properties

Other significant physical properties of clusters are their electric, magnetic, and optical properties. The electric properties of clusters, such as their conductivity and metallic or insulating character, depend on the substance and the size of the cluster. Quantum theory attributes wavelike character to matter, a behaviour that is detectable only when matter is examined on the scale of atoms and electrons. At a scale of millimetres or even millionths of millimetres, the wavelengths of matter are too short to be observed. Clusters are often much smaller than that, with the important consequence that many are so small that when examined their electrons and electronic states can exhibit the wavelike properties of matter. In fact, quantum properties may play an important role in determining the electrical character of the cluster. In particular, as described previously, if a cluster is extremely small, the energy levels or quantum states of its electrons are not close enough together to permit the cluster to conduct electricity.

Moreover, an alternative way to view this situation is to recognize that a constant electric force (i.e., the kind that drives a direct current) and an alternating force (the kind that generates alternating current) can behave quite differently in a cluster. Direct current cannot flow in an isolated cluster and probably cannot occur in a small cluster even if it is sandwiched between slabs of metal. The current flow is prohibited both because the electrons that carry the current encounter the boundaries of the cluster and because there are no quantum states readily available at energies just above those of the occupied states, which are the states that must be achieved to allow the electrons to move. However, if a field of alternating electric force is applied with a frequency of alternation so high that the electrons are made to reverse their paths before they encounter the boundaries of the cluster, then the equivalent of conduction will take place. Ordinary 60-cycle (60-hertz) alternating voltage and even alternations at radio-wave frequencies switch direction far too slowly to produce this behaviour in clusters; microwave frequencies are required.

Magnetic properties of clusters, in contrast, appear to be rather similar to those of bulk matter. They are not identical, because clusters contain only small numbers of electrons, which are the particles whose magnetic character makes clusters and bulk matter magnetic. As a result, the differences between magnetic properties of clusters and of bulk matter are more a matter of degree than of kind. Clusters of substances magnetic in the bulk also tend to be magnetic. The larger the cluster, the more nearly will the magnetic character per atom approach that of the bulk. The degree of this magnetic character depends on how strongly the individual electron magnets couple to each other to become aligned in the same direction; the larger the cluster, the stronger is this coupling.

The optical properties of weakly bound clusters are much like those of their component atoms or molecules; the small differences are frequently useful diagnostics of how the cluster is bound and what its structure may be. Optical properties of metal clusters are more like those of the corresponding bulk metals than like those of the constituent atoms. These properties reveal which cluster sizes are unusually stable and therefore correspond to “magic-number” sizes. Optical properties of covalently bound clusters are in most cases—e.g., fullerenes—unlike those of either the component atoms or the bulk but are important clues to the structure and bonding of the cluster.