Form and function of fungi

infungus
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/fungus
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Fungi, fungi

News

Climate change is driving trees away from crucial fungi Dec. 4, 2024, 3:52 AM ET (Science News)

Size range

The mushrooms, because of their size, are easily seen in fields and forests and consequently were the only fungi known before the invention of the microscope in the 17th century. The microscope made it possible to recognize and identify the great variety of fungal species living on dead or live organic matter. The part of a fungus that is generally visible is the fruiting body, or sporophore. Sporophores vary greatly in size, shape, colour, and longevity. Some are microscopic and completely invisible to the unaided eye; others are no larger than a pin head; still others are gigantic structures. Among the largest sporophores are those of mushrooms, bracket fungi, and puffballs. Some mushrooms reach a diameter of 20 to 25 cm (8 to 10 inches) and a height of 25 to 30 cm (10 to 12 inches). Bracket, or shelf, fungi can reach 40 cm (16 inches) or more in diameter. A specimen of the bracket fungus Fomitiporia ellipsoidea discovered in 2010 on Hainan Island in southern China had a fruiting body measuring 10.8 metres (35.4 feet) in length and 82–88 cm (2.7–2.9 feet) in width. It may have held some 450 million spores and weighed an estimated 400–500 kg (882–1,102 pounds), at the time making it the largest fungal fruiting body ever documented. Puffballs also can grow to impressive sizes. The largest puffballs on record measured 150 cm (5 feet) in diameter. The number of spores within such giants reaches several trillion.

Distribution and abundance

Fungi are either terrestrial or aquatic, the latter living in freshwater or marine environments. Freshwater species are usually found in clean, cool water because they do not tolerate high degrees of salinity. However, some species are found in slightly brackish water, and a few thrive in highly polluted streams. Soil that is rich in organic matter furnishes an ideal habitat for a large number of species; only a small number of species are found in drier areas or in habitats with little or no organic matter. Fungi are found in all temperate and tropical regions of the world where there is sufficient moisture to enable them to grow. A few species of fungi live in the Arctic and Antarctic regions, although they are rare and are more often found living in symbiosis with algae in the form of lichens (see below Lichens). About 144,000 species of fungi have been identified and described, but mycologists estimate that there may be between 2.2 million and 3.8 million total species.

Basic morphology

A typical fungus consists of a mass of branched, tubular filaments enclosed by a rigid cell wall. The filaments, called hyphae (singular hypha), branch repeatedly into a complicated, radially expanding network called the mycelium, which makes up the thallus, or undifferentiated body, of the typical fungus. The mycelium grows by utilizing nutrients from the environment and, upon reaching a certain stage of maturity, forms—either directly or in special fruiting bodies—reproductive cells called spores. The spores are released and dispersed by a wide variety of passive or active mechanisms; upon reaching a suitable substrate, the spores germinate and develop hyphae that grow, branch repeatedly, and become the mycelium of the new individual. Fungal growth is mainly confined to the tips of the hyphae, and all fungal structures are therefore made up of hyphae or portions of hyphae.

Some fungi, notably the yeasts, do not form a mycelium but grow as individual cells that multiply by budding or, in certain species, by fission. In addition, the so-called cryptomycota, a primitive group of microscopic fungi, diverge significantly from the standard body plan of other fungi in that their cell walls lack the rigid polymer known as chitin. These microscopic fungi also possess a whiplike flagellum.