Vegetative structures

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/horticulture
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Many plants produce specialized vegetative structures that can be used in propagation. These may be storage organs such as tubers that enable the plant to survive adverse conditions or organs adapted for natural propagation—runners or rhizomes—so that the plant may rapidly spread.

Bulbs consist of a short stem base with one or more buds protected by fleshy leaves. They are found in such plants as the onion, daffodil, and hyacinth. Bulbs commonly grow at ground level, though bulblike structures (bulbils) may form on aerial stems in some lilies or in association with flower parts, as in the onion. Buds in the axils (angle between leaf and stem) of the fleshy leaves may form miniature bulbs (bulblets) that when grown to full size are known as offsets. Corms are short, fleshy, underground stems without fleshy leaves. The gladiolus and crocus are propagated by corms. They may produce new cormels from fleshy buds. Rhizomes are horizontal, underground stems that are compressed, as in the iris, or slender, as in turf grasses. Runners are specialized aerial stems, a natural agent of increase and spread for such plants as the strawberry, strawberry geranium, and bugleweed (Ajuga). Tubers are fleshy enlarged portions of underground stem. The edible portion of the potato, the tuber, is also used as a means of propagation.

A number of plants form lateral shoots from the stem, which when rooted serve to propagate the plant. These are known collectively as offshoots but are often called offsets, crown divisions, ratoons, or slips.

Roots may also be structurally modified as propagative and food-storage organs. These tuberous roots, fleshy swollen structures, readily form shoots (called adventitious, because they do not form from nodes). The sweet potato and dahlia are propagated by tuberous roots. Shoots that rise adventitiously from roots are called suckers. The red raspberry is propagated by suckers.

Layering and cutting

Propagation can be accomplished by methods in which plants are induced to regenerate missing parts, usually adventitious roots or shoots. When the regenerated part is still attached to the plant the process is called layerage, or layering; when the regenerating portion is detached from the plant the process is called cuttage, or cutting.

Layering often occurs naturally. Drooping black raspberry stems tend to root in contact with the soil. The croton, a tropical plant, is commonly propagated by wrapping moist sphagnum enclosed in plastic around a stem cut to induce rooting. After rooting, the stem is detached and planted. Though simple and effective, layering is not normally adapted to large-scale nursery practices.

Cutting is one of the most important methods of propagation. Many plant parts can be used; thus, cuttings are classified as root, stem, or leaf. Stem cuttings are the most common.

The ability of stems to regenerate missing parts is variable; consequently plants may be easy or difficult to root. The physiological ability of cuttings to form roots is due to an interaction of many factors. These include transportable substances in the plant itself: plant hormones (such as auxin), carbohydrates, nitrogenous substances, vitamins, and substances not yet identified. Environmental factors such as light, temperature, humidity, and oxygen are important, as are age, position, and type of stem.

Although easy-to-root plants such as willow or coleus can be propagated merely by plunging a stem in water or moist sand, the propagation of difficult-to-root species is a highly technical process. To achieve success with difficult-to-root plants special care is taken to control the environment and encourage rooting. A number of growth regulators stimulate rooting. A high degree of success has been achieved with indolebutyric acid, a synthetic auxin that is applied to the cut surface. A number of materials known as rooting cofactors have been found that interact with auxin to further stimulate rooting, and these are sold as a hormone rooting compound.

Humidity control is particularly important to prevent death of the stem from desiccation before rooting is complete. The use of an intermittent-mist system in propagation beds has proved to be an important means of improving success in propagation by cuttings. These operate by applying water to the plant for a few seconds each minute.

Grafting

Grafting involves the joining together of plant parts by means of tissue regeneration. The part of the combination that provides the root is called the stock; the added piece is called the scion. When more than two parts are involved, the middle piece is called the interstock. When the scion consists of a single bud, the process is called budding. Grafting and budding are the most widely used of the vegetative propagation methods.

Stock cambium and scion cambium respond to being cut by forming masses of cells (callus tissues) that grow over the injured surfaces of the wounds. The union resulting from interlocking of the callus tissues is the basis of graftage. In dicots (e.g., most trees) cambium—a layer of actively dividing cells between xylem (wood) and phloem (bast) tissues—is usually arranged in a continuous ring; in woody members, new layers of tissue are produced annually. Monocot stems (e.g., orchids) do not possess a continuous cambium layer or increase in thickness; grafting is seldom possible.

The basic technique in grafting consists of placing cambial tissues of stock and scion in intimate association, so that the resulting callus tissue produced from stock and scion interlocks to form a living continuous connection. A snug fit can be obtained through the tension of the split stock and scion or both. Tape, rubber, and nails can be used to achieve close contact. In general, grafts are only compatible between the same or closely related species. Success in grafting depends on skill in achieving a snug fit. Warm temperatures (27–30 °C [80–85 °F]) increase callus formation and improve “take” in grafting. Thus, grafts using dormant material are often stored in a warm moist place to stimulate callus formation.

In grafting and budding, the rootstock can be grown from seed or propagated asexually. Within a year a small amount of scion material from one plant can produce hundreds of plants.

Grafting has uses in addition to propagation. The interaction of rootstocks may affect the performance of the stock through dwarfing or invigoration and in some cases may affect quality. Further, the use of more than one component can affect the disease resistance and hardiness of the combination.

Grafting as a means of growth control is used extensively with fruit trees and ornamentals such as roses and junipers. Fruit trees are normally composed of a scion grafted onto a rootstock. Sometimes an interstock is included between the scion and stock. The rootstock may be grown from seed (seedling rootstock) or asexually propagated (clonal rootstock). In the apple, a great many clonal rootstocks are available to give a complete range of dwarfing; rootstocks are also available to invigorate growth of the scion cultivar.

Tissue culture techniques utilizing embryos, shoot tips, and callus can be used as a method of propagation. The procedure requires aseptic techniques and special media to supply inorganic elements; sugar; vitamins; and, depending on the tissue, growth regulators and organic complexes such as coconut milk, yeast, and amino-acid extract.

Embryo culture has been used to produce plants from embryos that would not normally develop within the fruit. This occurs in early-ripening peaches and in some hybridization between species. Embryo culture can also be used to circumvent seed dormancy.

A shoot tip, when excised and cultured, may produce roots at the base. This technique is employed for the purpose of producing plants free of disease. Certain orchids are rapidly multiplied by this method. Cultured shoot tips form an embryo-like stage that can be sectioned indefinitely to build up large stocks rapidly. These bulblike bodies left unsectioned develop into small plantlets. A similar procedure is used with the carnation, in which the shoot tip forms a cell mass that can be subdivided.

Callus tissue culture—a very specialized technique that involves growth of the callus, followed by procedures to induce organ differentiation—has been successful with a number of plants including carrot, asparagus, and tobacco. Used extensively in research, callus culture has not been considered a practical method of propagation. Callus culture produces genetic variability because in some cases cells double their chromosome number. In rice and tobacco, mature plants have been obtained from callus formed from pollen. These plants have half the normal number of chromosomes.