mimicry

biology
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/mimicry
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.

mimicry, in biology, phenomenon characterized by the superficial resemblance of two or more organisms that are not closely related taxonomically. This resemblance confers an advantage—such as protection from predation—upon one or both organisms by which the organisms deceive the animate agent of natural selection. The agent of selection (which may be, for example, a predator, a symbiont, or the host of a parasite, depending on the type of mimicry encountered) interacts directly with the similar organisms and is deceived by their similarity. This type of natural selection distinguishes mimicry from other types of convergent resemblance that result from the action of other forces of natural selection (e.g., temperature, food habits) on unrelated organisms.

In the most-studied mimetic relationships, the advantage is one-sided, one species (the mimic) gaining advantage from a resemblance to the other (the model). Since the discovery of mimicry in butterflies in the mid-19th century, a great many plants and animals have been found to be mimetic. In many cases the organisms involved belong to the same class, order, or even family, but numerous instances are known of plants mimicking animals and vice versa. Although the best-known examples of mimicry involve similarity of appearance, investigations have disclosed fascinating cases in which the resemblance involves sound, smell, behaviour, and even biochemistry.

A key element in virtually every mimetic situation is deception by the mimic, perpetrated upon a third party, which mistakes the mimic for the model. This third party may be the collective potential predators upon the mimic, potential prey of a predacious mimic, or even one sex of the mimic’s own species. In some cases, such as host mimicry by parasites, the organism deceived is the model.

Because of the variety of situations in which mimicry occurs, a formal definition must rest upon the effect of certain key communicative signals upon the appropriate receiver and the resultant evolutionary effect upon the emitters of the signals. Mimicry may be defined as a situation in which virtually identical signals, emitted by two different organisms, have in common at least one receiver that reacts in the same manner to both signals because it is advantageous to react in that manner to one of them (that of the model), although it may be disadvantageous to react thus to the counterfeit signal.

The distinction between camouflage and mimicry is not always clear when only the model and the mimic are at hand. When the receiver is known and its reactions understood, however, the distinction is quite clear: in mimicry the signals have a special significance for the receiver and for the sender, which has evolved the signals in order to be perceived by the receiver; in camouflage the sender seeks to avoid detection by the receiver through imitation of what is neutral background to the receiver. For information on camouflage, see also coloration: Camouflage.

greylag. Flock of Greylag geese during their winter migration at Bosque del Apache National Refugee, New Mexico. greylag goose (Anser anser)
Britannica Quiz
Biology Bonanza

Basic types of mimicry

Batesian mimicry

In 1862 the English naturalist Henry W. Bates published an explanation for unexpected similarities in appearance between certain Brazilian forest butterflies of two distinct families. Members of one family, the Heliconiidae, are unpalatable to birds and are conspicuously coloured; members of the other family, the Pieridae, are edible to predators. Bates concluded that the conspicuous coloration of the inedible species must serve as a warning for predators that had learned of their inedibility through experience. The deceptively similar colour patterns of the edible species would provide protection from the same predators. This form of mimicry, in which a defenseless organism bears a close resemblance to a noxious and conspicuous one, is called Batesian, in honour of its discoverer.