nucleic acid

chemical compound
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/nucleic-acid
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: nuclein
Top Questions

What are nucleic acids?

What is the basic structure of a nucleic acid?

What nitrogen-containing bases occur in nucleic acids?

When were nucleic acids discovered?

nucleic acid, naturally occurring chemical compound that serves as the main information-carrying molecule of the cell and that directs the process of protein synthesis, thereby determining the inherited characteristics of every living thing. Nucleic acids are further defined by their ability to be broken down to yield phosphoric acid, sugars, and a mixture of organic bases (purines and pyrimidines).

The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA is the master blueprint for life and constitutes the genetic material in all free-living organisms and most viruses. RNA is the genetic material of certain viruses, but it is also found in all living cells, where it plays an important role in certain processes, such as the making of proteins.

Nucleotides: building blocks of nucleic acids

Basic structure

Nucleic acids are polynucleotides—that is, long chainlike molecules composed of a series of nearly identical building blocks called nucleotides. Each nucleotide consists of a nitrogen-containing aromatic base attached to a pentose (five-carbon) sugar, which is in turn attached to a phosphate group.

Each nucleic acid contains four of five possible nitrogen-containing bases: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). A and G are categorized as purines, and C, T, and U are collectively called pyrimidines. All nucleic acids contain the bases A, C, and G; T, however, is found only in DNA, while U is found in RNA.

The pentose sugar in DNA (2′-deoxyribose) differs from the sugar in RNA (ribose) by the absence of a hydroxyl group (―OH) on the 2′ carbon of the sugar ring. Without an attached phosphate group, the sugar attached to one of the bases is known as a nucleoside. The phosphate group connects successive sugar residues by bridging the 5′-hydroxyl group on one sugar to the 3′-hydroxyl group of the next sugar in the chain. These nucleoside linkages are called phosphodiester bonds and are the same in RNA and DNA.

Biosynthesis and degradation

Nucleotides are synthesized from readily available precursors in the cell. The ribose phosphate portion of both purine and pyrimidine nucleotides is synthesized from glucose via the pentose phosphate pathway. The six-atom pyrimidine ring is synthesized first and subsequently attached to the ribose phosphate. The two rings in purines are synthesized while attached to the ribose phosphate during the assembly of adenine or guanine nucleosides. In both cases the end product is a nucleotide carrying a phosphate attached to the 5′ carbon on the sugar. Finally, a specialized enzyme called a kinase adds two phosphate groups using adenosine triphosphate (ATP) as the phosphate donor to form ribonucleoside triphosphate, the immediate precursor of RNA. For DNA, the 2′-hydroxyl group is removed from the ribonucleoside diphosphate to give deoxyribonucleoside diphosphate. An additional phosphate group from ATP is then added by another kinase to form a deoxyribonucleoside triphosphate, the immediate precursor of DNA.

During normal cell metabolism, RNA is constantly being made and broken down. The purine and pyrimidine residues are reused by several salvage pathways to make more genetic material. Purine is salvaged in the form of the corresponding nucleotide, whereas pyrimidine is salvaged as the nucleoside.

Are you a student?
Get a special academic rate on Britannica Premium.