orthogonality

mathematics
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/orthogonality
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Related Topics:
mathematics

orthogonality, In mathematics, a property synonymous with perpendicularity when applied to vectors but applicable more generally to functions. Two elements of an inner product space are orthogonal when their inner product—for vectors, the dot product (see vector operations); for functions, the definite integral of their product—is zero. A set of orthogonal vectors or functions can serve as the basis of an inner product space, meaning that any element of the space can be formed from a linear combination (see linear transformation) of the elements of such a set.

This article was most recently revised and updated by William L. Hosch.