Table of Contents
References & Edit History Related Topics
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/radiation
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

In neutron irradiation of a solid, atoms are dislodged from normal lattice positions and set in motion (the Wigner effect). The fractional amount of energy transfer depends, as in any elastic collision, on the mass ratio of the neutron to that of the recoil atom. Thus, in graphite a carbon atom, on first collision with a neutron of 1,000,000-eV (produced, say, in a fission process), receives a kinetic energy of approximately 105 eV, which is large compared with its binding energy in the lattice (about 10 eV). It is estimated that the 1,000,000-electron-volt neutron strikes about 60 carbon atoms before it is thermalized or its speed is so much reduced that it cannot knock off other carbon atoms. Much of the structural damage caused by radiation is attributable to these (relatively heavy) carbon atoms rather than to the original neutron. In this sense, radiation damage by fast neutrons may be viewed as an indirect action. Slowing of the fast carbon (or other dislodged) atoms is basically governed by interaction time. This fact means that the stopping is light in the beginning of the journey of a dislodged atom and results only in occasional displacement of atoms. Toward the end of its career a large number of atoms are displaced in quick succession along a row, and finally a large amount of residual energy is dumped locally into a relatively small group of atoms. This process generates the displacement (or thermal) spike; the local temperature rise is estimated to be about 1,000 K. Even though the temperature rise lasts only about 10-11 second before the track is cooled down, this duration is enough for permanent structural damage. At least a part of the swelling of graphite under reactor-neutron irradiation is the result of this local heating; another part originates in change in lattice dimension under irradiation.

The high temperature rise in a thermal spike probably results in local melting of the solid. Evidence in that direction has been obtained from a study of beta-brass (an alloy consisting of equal numbers of atoms of copper and zinc) under neutron bombardment at low temperature. Before irradiation, the alloy structure is ordered: each copper atom is surrounded by eight zinc atoms as nearest neighbours and vice versa. After irradiation, a general random rearrangement of the atoms can be detected, presumably the result of melting and refreezing.

Long-term effects of radiation on crystals are numerous, and the magnitudes of these effects depend on the crystal structure and previous history. Only some general features of these effects are recounted here.

1. Radiation damage may be thought to consist of pairs of interstitial atoms ejected from their normal lattice sites and the corresponding vacancies left behind. A vacancy-interstitial pair is called a Frenkel defect.

2. A solid has a tendency to recover spontaneously from radiation damage. If it were not for this property, it would indeed be extremely difficult to operate nuclear reactors that are permitted to heat up periodically to remove the effect in the graphite core. The healing (or so-called annealing) is presumably attributable to the recombination of interstitial atoms and vacancies, thereby removing Frenkel defects. It is not necessary that an interstitial atom always recombine with its corresponding vacancy. Often it may recombine with a vacancy that resembles the one that it left; the result is approximate restoration of the original properties of the crystal. Such annealing is facilitated by the increased mobility of the vacancies and interstitials at higher temperature. At a particular temperature called the annealing temperature, the healing becomes fast and essentially complete. The same substance may have somewhat different annealing temperatures depending on the particular property under study. Many experiments on radiation damage must be carried out at low temperatures to freeze in the defects produced. Pure metals are the most easily annealed substances. Annealing temperatures in such cases are relatively low. Accordingly, the annealing temperature for the increase of electrical resistance in pure copper is only around 40 K. On the other hand, changes in elastic modulus and hardness, such as are required to produce tuning-fork characteristics, persist up to room temperature—namely, 293 K. Quick annealing in pure metals is directly attributable to the high mobility of atoms in perfectly ordered structures. At the other extreme are organic solids, particularly polymers, that are composed of large molecules. In this case, the damage originates in the breaking of bonds that ordinarily do not rejoin in the original manner but instead produce chemically different material.

3. In simple metals irradiation decreases conductivity for both heat and electricity. Conduction of both in metallic crystals is attributable to their ordered structure. The more perfect the structure, the better is the conduction. Frenkel defects, generated by irradiation, therefore decrease both conductivities. In extreme cases conductivity decrease of orders of magnitude has been observed. With moderate irradiation, however, both thermal and electrical conductivities decrease usually by half. The thermal conductivity of graphite falls to roughly half the unirradiated value with an exposure of 3 × 1020 neutrons per square centimetre at room temperature. Like other property changes, this effect also can be annealed at elevated temperatures with concomitant release of stored energy. Energy storage in graphite amounts to about 200 calories per gram per 1020 neutrons per square centimetre total flux. Interstitial carbon atoms produced in the irradiation scatter electrons and thus decrease electrical conductivity. The pattern of conductivity decrease and increase depends on the nature of the graphite and the duration of exposure in a reactor. With ceramic materials, loss of thermal conductivity by a factor of about 3 to 5 may be observed under conditions in which the decrease is about one-half in graphite. In mica, on the other hand, the change is somewhat less than in graphite.

4. Hardness and ductility depend on perfection of the crystal structure. It is thus found that irradiation results in a loss of ductility and an increase in hardness. Such effects are attributed to glide-plane obstruction in the crystal. Most structured materials become harder, less ductile, and sometimes more brittle as the result of neutron irradiation. Similarly, most polymers also lose ductility on irradiation. In a certain sense radiation-induced damage to the crystal structure is qualitatively similar to that produced by cold-working (for example, by hammering). Neutron irradiation of pure copper, which is naturally soft at room temperature, makes it so hard that it can be made to sing like a tuning fork. Graphite experiences increase in strength and hardness upon irradiation. Annealing is faster at elevated temperatures; also, damage is less when the irradiation is at a higher temperature. A similar effect is seen for the compressive stress-strain curve. Studies of dynamic properties in ceramics indicate a saturation effect at large doses.

5. As was discussed above, irradiation causes expansion and lattice distortion in most cases. A perfect crystal of graphite consists of planes of carbon atoms layer upon layer. When irradiated by neutrons, graphite expands perpendicular to the base plane and contracts slightly parallel to it. After moderate exposure in a nuclear reactor, the expansion is approximately 1 percent for a flux of 1020 neutrons per square centimetre. The actual amount of expansion, of course, depends on the fabrication history and operating temperature of the graphite. Expansion of moderator materials such as graphite is of considerable importance in the design of nuclear reactors. Even a small percentage change in dimension can result in large total change in the reactor structure; if this change is not allowed for in the engineering design of the reactor, it may well create strained operating conditions eventually leading to failure.

Milton Burton Asokendu Mozumder Myron Luntz