receptive field

physiology
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/receptive-field
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Related Topics:
optic nerve

receptive field, region in the sensory periphery within which stimuli can influence the electrical activity of sensory cells. The receptive field encompasses the sensory receptors that feed into sensory neurons and thus includes specific receptors on a neuron as well as collectives of receptors that are capable of activating a neuron via synaptic connections. Receptive fields are found throughout the body, including over the body surface; in tissues such as muscles, joints, and the eyes; and in internal organs. The concept of the receptive field is central to sensory neurobiology, because it provides a description of the location at which a sensory stimulus must be presented in order to elicit a response from a sensory cell.

Discovery of receptive fields

One of the first scientists to use the term receptive field was English physiologist Sir Charles Scott Sherrington, who in 1906 incorporated it into his discussion of the scratch reflex in dogs. Around the same time, a number of researchers were studying electrical potentials in the eye and optic nerve in response to visual stimuli. Although those studies provided some insight into the physiology of sensory reception, it was not until 1938 that the modern concept of the receptive field emerged. That year American physiologist Haldan Keffer Hartline became the first to isolate and record electrical responses from single optic nerve fibres of vertebrate eyes. Hartline defined the receptive field of a retinal ganglion cell as the retinal area from which an increase in the frequency of action potentials could be elicited. (An action potential is a temporary reversal in electrical polarization of the neuron membrane that produces a nerve impulse.) His work played a key role in the identification of receptive fields on single neurons. In 1953 British neuroscientist Horace B. Barlow and American neurophysiologist Stephen W. Kuffler extended Hartline’s definition to include all areas of the retina within which stimulation could either excite or inhibit the ganglion cell response. Also in the 1950s American physiologist Vernon B. Mountcastle described the response properties of single neurons in the somatosensory thalamus and the cortex.

Organization of receptive field properties

There is a serial and hierarchical organization of receptive field properties. Each sensory modality is composed of multiple brain areas. As one proceeds from receptor to thalamus to the primary sensory cortex and higher cognitive areas of the brain, receptive fields demonstrate increasingly complex stimulus requirements. For example, in the auditory system, peripheral neurons may respond well to pure tones, whereas some central neurons respond better to frequency-modulated sounds. In the primary visual and somatosensory cortex, receptive fields are selective for the orientation or direction of motion of a stimulus, whereas in higher visual cortical areas, neurons may respond best to images of faces or objects.

In the visual and somatosensory systems, receptive fields can be essentially circular or oval regions of retina or skin. By contrast, in the thalamus, visual and somatosensory receptive fields are circular and exhibit centre-surround antagonism, in which onset of a stimulus in one skin or retinal region elicits activating responses and in surrounding regions elicits inhibitory responses. Thus, the same stimulus produces opposite responses in those regions. The effects of stimulus antagonism at different locations are a manifestation of the phenomenon called lateral inhibition. In lateral inhibition the optimal stimulus is not spatially uniform across the receptive field; rather, it is a discrete spot of light (in the case of the eye) or contact (in the case of a body surface), with contrast between central and surrounding regions.

Referring as it does to a region, a receptive field is fundamentally a spatial entity (a portion of the visual field or retina, or a portion of the body surface); that makes the most sense in the visual and somatosensory systems. In the auditory system hair cells tuned to particular frequencies are located at different locations along the basilar membrane, implying a spatial relevance for auditory receptive fields. In the auditory system one could define a cell’s receptive field as the specific set of frequencies to which the cell responds. In the nervous system generally, the receptive field of a sensory neuron is defined by its synaptic inputs; each cell’s receptive field results from the combination of fields of all of the neurons providing input to it. Because inputs are not simply summed, the receptive field properties of a neuron commonly are described in terms of the stimuli that elicit responses from the cell.

The classical receptive field

The characteristics of a cell’s receptive field depend on how the field is measured. The classic method to determine the location and extent of the receptive field is to present discrete stimuli at different locations in the sensory periphery, such as on the retina or the skin. The region that yields deviations in action potential (or “spike”) discharge rate away from the background activity level of a neuron has been variously referred to as the receptive field, the classical receptive field, the receptive field centre, the discharge field, the discharge centre, the minimum discharge field, or the minimum response field. The region traditionally defined as the classical receptive field also includes the inhibitory subregions involved in centre-surround antagonism, since stimuli presented in the inhibitory subregions can evoke responses when they are turned off. The classical receptive field excludes surrounding regions that may be relevant to a neuron’s activity. Thus, by definition, stimuli presented outside the cell’s receptive field do not by themselves change its spiking activity.