print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/star-astronomy
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Near the Sun, most stars are members of binaries, and many of the nearest single stars are suspected of having companions. Although some binary members are separated by hundreds of astronomical units and others are contact binaries (stars close enough for material to pass between them), binary systems are most frequently built on the same scale as that of the solar system—namely, on the order of about 10 astronomical units. The division in mass between two components of a binary seems to be nearly random. A mass ratio as small as about 1:20 could occur about 5 percent of the time, and under these circumstances a planetary system comparable to the solar system is able to form.

The formation of double and multiple stars on the one hand and that of planetary systems on the other seem to be different facets of the same process. Planets are probably produced as a natural by-product of star formation. Only a small fraction of the original nebula matter is likely to be retained in planets, since much of the mass and angular momentum is swept out of the system. Conceivably, as many as 100 million stars could have bona fide planets in the Milky Way Galaxy.

Individual planets around other stars—i.e., extrasolar planets—are very difficult to observe directly because a star is always much brighter than its attendant planet. Jupiter, for example, would be only one-billionth as bright as the Sun and appear so close to it as to be undetectable from even the nearest star. If candidate stars are treated as possible spectroscopic binaries, however, then one may look for a periodic change in the star’s radial velocity caused by a planet swinging around it. The effect is very small: even Jupiter would cause a change in the apparent radial velocity of the Sun of only about 10 metres (33 feet) per second spread over Jupiter’s orbital period of about 12 years at best. Current techniques using very large telescopes to study fairly bright stars can measure radial velocities with a precision of about a metre per second, provided that the star has very sharp spectral lines, such as is observed for Sun-like stars and stars of types K and M. This means that at present the radial-velocity method normally can detect planets like Earth around M-type stars. Moreover, the closer the planet is to its parent star, the greater and quicker the velocity swing, so that detection of giant planets close to a star is favoured over planets farther out. Finally, even when a planet is detected, the usual spectroscopic binary problem of not knowing the angle between the orbit plane and that of the sky allows only a minimum mass to be assigned to the planet.

One exception to this last problem is HD 209458, a seventh-magnitude G0 V star about 150 light-years away with a planetary object orbiting it every 3.5 days. Soon after the companion, HD 209458b, was discovered in 1999 by its effect on the star’s radial velocity, it also was found to be eclipsing the star, meaning that its orbit is oriented almost edge-on toward Earth. This type of eclipse is called a transit, and this method has been used, most notably by the Kepler satellite, to find thousands of extrasolar planets. Some of these planets are roughly the size of Earth and can be found in their star’s habitable zone, the distance from a star where liquid water, and thus possibly life, can survive on the surface.

This transit of HD 209458b, as well as observations of spectral lines in the planet’s atmosphere, allowed determination of the planet’s mass and radius—0.64 and 1.38 times those of Jupiter, respectively. These numbers imply that the planet is even more of a giant than Jupiter itself. What was unexpected is its proximity to the parent star—more than 100 times closer than Jupiter is to the Sun, raising the question of how a giant gaseous planet that close can survive the star’s radiation. The fact that many other extrasolar planets have been found to have orbital periods measured in days rather than years, and thus to be very close to their parent stars, suggests that the HD 209458 case is not unusual. There are also some confirmed cases of planets around supernova remnants called pulsars, although whether the planets preceded the supernova explosions that produced the pulsars or were acquired afterward remains to be determined.

The first extrasolar planets were discovered in 1992. Thousands of extrasolar planets are known, with more such discoveries being added regularly.

In addition to the growing evidence for existence of extrasolar planets, space-based observatories designed to detect infrared radiation have found many young stars (including Vega, Fomalhaut, and Beta Pictoris) to have disks of warm matter orbiting them. This matter is composed of myriad particles mostly about the size of sand grains and might be taking part in the first stage of planetary formation.

Mass extremes

The mass of most stars lies within the range of 0.3 to 3 solar masses. The star with the largest mass determined to date is R136a1, a giant of about 265 solar masses that had as much as 320 solar masses when it was formed. There is a theoretical upper limit to the masses of nuclear-burning stars (the Eddington limit), which limits stars to no more than a few hundred solar masses. On the low mass side, most stars seem to have at least 0.1 solar mass. The theoretical lower mass limit for an ordinary star is about 0.075 solar mass, for below this value an object cannot attain a central temperature high enough to enable it to shine by nuclear energy. Instead, it may produce a much lower level of energy by gravitational shrinkage. If its mass is not much below the critical 0.075 solar mass value, it will appear as a very cool, dim star known as a brown dwarf. Its evolution is simply to continue cooling toward eventual extinction. At still somewhat lower masses, the object would be a giant planet. Jupiter, with a mass roughly 0.001 that of the Sun, is just such an object, emitting a very low level of energy (apart from reflected sunlight) that is derived from gravitational shrinkage.

Brown dwarfs were late to be discovered, the first unambiguous identification having been made in 1995. It is estimated, however, that hundreds must exist in the solar neighbourhood. An extension of the spectral sequence for objects cooler than M-type stars has been constructed, using L for warmer brown dwarfs, T for cooler ones, and Y for the coolest. The presence of methane in the T brown dwarfs and of ammonia in the Y brown dwarfs emphasizes their similarity to giant planets.

Stellar radii

Angular sizes of bright red giant and supergiant stars were first measured directly during the 1920s, using the principle of interference of light. Only bright stars with large angular size can be measured by this method. Provided the distance to the star is known, the physical radius can be determined.

Eclipsing binaries also provide extensive data on stellar dimensions. The timing of eclipses provides the angular size of any occulting object, and so analyzing the light curves of eclipsing binaries can be a useful means of determining the dimensions of either dwarf or giant stars. Members of close binary systems, however, are sometimes subject to evolutionary effects, mass exchange, and other disturbances that change the details of their spectra.

A more recent method, called speckle interferometry, has been developed to reproduce the true disks of red supergiant stars and to resolve spectroscopic binaries such as Capella. The speckle phenomenon is a rapidly changing interference-diffraction effect seen in a highly magnified diffraction image of a star observed with a large telescope.

If the absolute magnitude of a star and its temperature are known, its size can be computed. The temperature determines the rate at which energy is emitted by each unit of area, and the total luminosity gives the total power output. Thus, the surface area of the star and, from it, the radius of the object can be estimated. This is the only way available for estimating the dimensions of white dwarf stars. The chief uncertainty lies in choosing the temperature that represents the rate of energy emission.

Average stellar values

Main-sequence stars range from very luminous objects to faint M-type dwarf stars, and they vary considerably in their surface temperatures, their bolometric (total) luminosities, and their radii. Moreover, for stars of a given mass, a fair spread in radius, luminosity, surface temperature, and spectral type may exist. This spread is produced by stellar evolutionary effects and tends to broaden the main sequence. Masses are obtained from visual and eclipsing binary systems observed spectroscopically. Radii are found from eclipsing binary systems, from direct measurements in a few favourable cases, by calculations, and from absolute visual magnitudes and temperatures.

Average values for radius, bolometric luminosity, and mass are meaningful only for dwarf stars. Giant and subgiant stars all show large ranges in radius for a given mass. Conversely, giant stars of very nearly the same radius, surface temperature, and luminosity can have appreciably different masses.