sulfosalt

mineral
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/sulfosalt
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Also known as: sulphosalt
Also spelled:
sulphosalt

sulfosalt, any of an extensive group of minerals, mostly rare species, marked by some of the most complicated atomic and crystal structures known to inorganic chemistry. They conform to the general composition AmBnXp, in which m, n, and p are integers; A may be lead, silver, thallium, or copper; B may be antimony, arsenic, bismuth, tin, or germanium; and X may be sulfur or selenium. Formerly it was believed that the sulfosalts were salts of complex hypothetical thioantimonic or thioarsenic acids (e.g., HSbS2, H18As4S15, H3AsS3), but X-ray diffraction analyses indicate that the atomic structures of many sulfosalts are based on structural fragments of simpler compounds such as galena (lead sulfide; PbS) blocks and stibnite (antimony trisulfide; Sb2S3) sheets. No encompassing theory has been evolved to rationalize many of these curious compounds. The complexity of many of the structures evidently results from their having crystallized at low temperatures and the consequent high degree of ordering of the metal atoms. Syntheses of such compositions at higher temperature usually result in structures simpler than the complicated low-temperature forms.

Although sulfosalts are much rarer than the sulfide minerals with which they are often associated, some localities are truly remarkable for the variety of species encountered. At the Lengenbach Mine in Switzerland, for example, more than 30 distinct species have been recognized, 15 of which are not found elsewhere. Most sulfosalts have formed at low temperature in open cavities, usually in association with copper–zinc–arsenic sulfide ores. Very often they occur in cavities of calcite and dolomite, as at the Lengenbach Mine. Most are lead gray in colour with a metallic lustre, brittle (rarely malleable), crystalline, and difficult to tell apart without recourse to X-ray diffraction and electron microprobe analyses. The thallium-bearing sulfosalts often are deep red and transparent, as sometimes are the sulfosalts of silver.

Although under exceptional circumstances some sulfosalts may constitute silver ores (i.e., proustite, pyrargyrite, and stephanite), and other species have constituted ores of silver (in minor amounts), mercury, arsenic, and antimony (i.e., boulangerite, livingstonite, enargite, and tennantite-tetrahedrite), their economic importance is trivial. Aside from mineralogical curiosities, the sulfosalts are of interest because their electronic properties are related to those of semiconductors.

Basalt sample returned by Apollo 15, from near a long sinous lunar valley called Hadley Rille.  Measured at 3.3 years old.
Britannica Quiz
(Bed) Rocks and (Flint) Stones
The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Adam Augustyn.