Physical properties

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/amphibole
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Long prismatic, acicular, or fibrous crystal habit, Mohs hardness between 5 and 6, and two directions of cleavage intersecting at approximately 56° and 124° generally suffice to identify amphiboles in hand specimens. The specific gravity values of amphiboles range from about 2.9 to 3.6. Amphiboles yield water when heated in a closed tube and fuse with difficulty in a flame. Their colour ranges extensively from colourless to white, green, brown, black, blue, or lavender and is related to composition, principally the iron content. Magnesium-rich amphiboles such as anthophyllite, cummingtonite, and tremolite are colourless or light in colour. The tremolite-ferroactinolite series ranges from white to dark green with increasing iron content. The finely fibrous and massive variety of actinolite-tremolite known as nephrite jade ranges from green to black. Common hornblende is typically black. Glaucophane and riebeckite are usually blue. Anthophyllite is gray to various shades of green and brown. The cummingtonite-grunerite series occurs in various shades of light brown. Iron-free varieties of tremolite containing manganese can have a lavender colour.

The common crystallographic habit of amphiboles is acicular or prismatic; however, most of the amphiboles are also known to crystallize in the asbestiform habit. The asbestiform variety of riebeckite is called crocidolite or blue asbestos. Amosite is a rare asbestiform variety of grunerite, named from the company Amos (Asbestos Mines of South Africa). The most important commercial asbestos material is chrysotile, the asbestiform variety of serpentine.

In thin sections, amphiboles are distinguished by several properties, including two directions of cleavage at approximately 56° and 124°, six-sided basal cross sections, characteristic colour, and pleochroism (colour variance with the direction of light propagation). Orthorhombic amphiboles exhibit less intense pleochroism than the monoclinic amphiboles.

Origin and occurrence

Exhibiting an extensive range of possible cation substitutions, amphiboles crystallize in both igneous and metamorphic rocks with a broad range of bulk chemical compositions. Because of their relative instability to chemical weathering at the Earth’s surface, amphiboles make up only a minor constituent in most sedimentary rocks.

Igneous rocks

Calcic amphiboles are characteristically contained in igneous rocks. Igneous amphiboles are intermediate in composition between tremolite, tschermakite, edenite, and pargasite end-members. Typically, these amphiboles of intermediate composition are called hornblende. Hornblende occurs in various plutonic igneous rocks, including diorites, quartz diorites, and granodiorites. It also occurs as phenocrysts in andesite lavas that contained enough water for amphiboles to form. Hastingsite is found in granites and alkali-rich intrusives such as syenites. The alkali amphiboles riebeckite and arfvedsonite are found most commonly in granites, syenites, nepheline syenites, and related pegmatites. Richterite occurs as a hydrothermal product and in veins in alkaline igneous rocks.

Contact metamorphic rocks

Amphiboles occur in contact metamorphic aureoles around igneous intrusions. (An aureole is the zone surrounding an intrusion, which is a mass of igneous rock that solidified between other rocks located within the Earth.) The contact aureoles produced in siliceous limestones and dolomites, called skarns or calc-silicate rocks, characteristically contain metamorphic amphiboles such as tremolite or actinolite. The presence of tremolite implies a relatively low grade of metamorphism as tremolite breaks down to form the pyroxene diopside in the presence of calcite and quartz at elevated temperatures. Richterite-winchite occurs in hydrothermally metamorphosed limestones. Magnesium-rich anthophyllites are found along contact zones of granitic dikes intruding ultramafic rocks (those rich in iron and magnesium).

Regional metamorphic rocks

Many different amphiboles may be contained in regional metamorphic rocks. Commonly several amphiboles may coexist with one another in the same sample, depending on the bulk chemistry of the rock and on the pressure and temperature of metamorphism. The amphiboles typically occur with plagioclase feldspar, quartz, and biotite, as well as with chlorite and oxide minerals. In magnesium-rich rocks, tremolite, anthophyllite, and hornblende may exist together. Gedrite and cummingtonite coexist with garnet in rocks enriched in aluminum and iron. Rocks containing cummingtonite or grunerite are characteristic of metamorphosed iron formations associated with iron oxides, iron-rich sheet silicates, carbonates, and quartz. Glaucophane occurs only in such metamorphic rocks as schist, eclogite, and marble. Glaucophane associated with jadeite, lawsonite, and calcite or aragonite is the characteristic assemblage found in high-pressure, low-temperature metamorphic rocks called blueschists, which have a blue colour imparted by the glaucophane. Blueschists have basaltic bulk compositions and may also contain riebeckite. The latter also may occur in regional metamorphic schists. Tremolite-actinolite and the sheet-silicate chlorite are the principal minerals in the low-to-moderate temperature and pressure greenschist metamorphic rocks. Hornblende is characteristic of some medium-grade metamorphic rocks known as amphibolites, in which hornblende and plagioclase are the major constituents.

Dehydration of amphiboles in the lower crust or mantle may be an important source of water that aids in the generation of magmas from partial melting processes.

William B. Simmons