print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/bone-disease
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

The cells of the bone tissue die if deprived of arterial blood supply for more than a few hours. The condition is called necrosis of bone or osteonecrosis. Osteonecrosis may be caused by injury to blood vessels, associated with dislocation or fracture of bone; by blood clots or gas bubbles in the blood vessels; by invasion of foreign tissue; and by metabolic disease.

Osteonecrosis may involve the shaft (diaphysis) or the ends (epiphyses) of the long bones. Sometimes the bone marrow of the diaphysis is primarily involved, and in osteomyelitis it is usually the compact (cortical) bone of the shaft that undergoes necrosis. For mechanical reasons, and because there is a poorer blood supply to cortical bone than to the cancellous bone of the epiphyses, the course of events following osteonecrosis differs in the two types of bone. When cortical bone is involved, the dead bone may prevent healing of osteomyelitis by mechanical irritation. When the cancellous bone of the epiphyses is involved, the lesion is invaded by blood vessels from adjacent bone, and a vigorous repair process ensues, characterized by removal of dead bone and the formation of new bone. The lesion may heal with reconstitution of both structural and mechanical properties, or the process of rebuilding may weaken the bone structure so that it collapses from the mechanical forces across the joint. In these circumstances the joint cartilage is damaged, and osteoarthritis eventually develops. It is for this reason that treatment of osteonecrosis in its early stage consists of preventing the joint from bearing weight; the condition is most often encountered in the hip and the knee.

Osteonecrosis often may develop spontaneously or in association with corticosteroid treatment and in pancreatic disease. In these conditions the immediate cause of impaired blood supply is not clear.

Ionizing radiation injury to bone

Bone tissue and the metaphyseal growth cartilage (the cartilage between the end of the bone and the shaft that later becomes bone) may be injured during the course of radiation treatment of tumours. The risk of this injury cannot always be avoided. The most common radiation injury to bone is fracture of the neck of the thighbone (femur) following radiation treatment of cancer of the uterus or the bladder. There is pain in the bone before this type of fracture can be seen by X-ray; the fracture usually heals without displacement. In children, radiation treatment of certain kidney tumours may cause growth abnormalities of the spine, with development of lateral curvature (scoliosis), while radiation treatment of the knee region may cause growth retardation in parts of the metaphyseal cartilages, with knock-knee or bowleg deformity.

Infectious diseases of bone

Osteomyelitis is the infection of bone tissue by microorganisms, which may gain access to bone either by spreading in the bloodstream in an infectious lesion elsewhere in the body (hematogenous osteomyelitis) or through a skin wound such as an open fracture.

A Yorkshire terrier dressed up as a veterinarian or doctor on a white background. (dogs)
Britannica Quiz
A Visit with the Word Doctor: Medical Vocabulary Quiz

The incidence of hematogenous osteomyelitis reflects the fact that the body is more susceptible to invasion by microorganisms when nutrition and hygiene are poor. Thus, hematogenous osteomyelitis is common in South America, Asia, and Africa. In developed countries, hematogenous osteomyelitis is often associated with slum conditions or systemic disease. However, high-energy fractures, notably those occuring in motor or missile accidents, and extensive surgery, which result in the direct introduction of microorganisms into bone are increasingly common causes of osteomyelitis worldwide.

Osteomyelitis is commonly caused by pus-forming (pyogenic) microorganisms, usually Staphylococcus aureus or Mycobacterium tuberculosis. Pyogenic osteomyelitis occurs both by direct routes and by hematogenous spread from an infection of the skin, urogenital tract, lung, or upper respiratory tract. Tuberculosis of the bone is almost always hematogenous in origin, usually disseminated from lesions in the lungs or the kidneys.

Hematogenous osteomyelitis is more common in children than in adults. In children it is usually located in the growing end of the long bones—at the knee, for example. In adults, hematogenous osteomyelitis is commonly located in the vertebrae of the spine (tuberculous or septic spondylitis). Osteomyelitis caused by direct invasion of microorganisms often complicates open fractures and surgical procedures for fracture or for degenerative joint disease.

Osteomyelitis is associated with the cardinal symptoms of inflammation: complaints of illness, fever, local redness, swelling, warmth, pain, and tenderness. In its early stages the X-ray appearance may be normal; later, signs of destruction and repair of bone ensue. Untreated, the condition may cause extensive destruction of bone, blocking of the nutrient blood vessels with death of bone tissue, extension to an adjacent joint with development of arthritis, and eventually a break through the skin with the evacuation of pus. It may heal, but occasional flare-ups usually occur, with evacuation of pus and small pieces of dead bone (sequestra) through a persistent communication from skin to bone (a chronic sinus).

The treatment of osteomyelitis is primarily aimed at killing microorganisms with antibiotics and, in later stages, removing pus and sequestra by surgery.

Bone tumour

Primary tumours, more common in children than in adults, are classified as malignant or benign; benign bone tumours may present therapeutic problems because of their location. Primary bone tumours are characterized by their origin in the skeletal tissue elements. For example, a tumour that is composed of cells related to bone cells is classified by attaching the prefix -osteo. Secondary (metastatic) bone tumours are malignant by definition and are characterized by their site of origin.

Common symptoms of a bone tumour are pain, swelling, and fracture that is spontaneous or caused by only trivial forces. Most bone tumours cause abnormalities observable in X-rays as defects in the bone tissue, as bone that has formed in reaction to the tumour, or, in some types of tumours, as the tumours themselves, which consist of bone. Some bone tumours cause biochemical abnormalities detectable by examination of blood samples for characteristic proteins or enzymes. The ultimate identification of bone tumours, however, rests on examination of tissue samples.

Benign tumours may be excised and the defect filled with a bone transplant for structural support. Malignant tumours may be treated by ionizing radiation, chemotherapy, or surgery. Treatment of metastatic bone tumours is aimed at suppression of pain and prevention or repair of fracture by external support or, occasionally, by internal fixation. Treatment of a malignant primary bone tumour is aimed at destruction of the tumour either by segmental resection of the involved region or by amputation.