Chemical interlinking: from elastomers to rubbery solids

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/elastomer
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Vulcanization

The molecular behaviour outlined above is sufficient to give polymers the properties of extensibility and elasticity, but in many cases the properties of elastomers must be modified in order to turn them into useful rubbery materials. The necessity for such modification was first demonstrated by natural rubber (polymer designation cis-polyisoprene) when it began to be produced commercially in the 18th century. Rubber was soon found to have two serious disadvantages: it becomes soft and sticky when warm, because it is really a viscous liquid, and it becomes hard when cold, because it crystallizes slowly below about 5 °C (40 °F). These disadvantages were overcome in 1839 by the discovery of vulcanization by the American inventor Charles Goodyear. Goodyear found that a mixture of rubber with some white lead and about 8 percent by weight of sulfur was transformed, on heating, to an elastic solid that remained elastic and resilient at high temperatures and yet stayed soft at low temperatures. It is now known that sulfur reacts with unsaturated hydrocarbon elastomers. One of the consequences is that a few sulfur interlinks (―Sn―) are formed between the polymer molecules, making a loose molecular network, as shown here:

Vulcanization of polyisoprene (natural rubber). (A) Adjacent chains of polyisoprene. (B) Under the influence of heat, sulfur reacts with carbon atoms close to the double bonds and form linkages between adjacent chains.

In A, adjacent chains of polyisoprene, made up of units containing carbon-carbon double bonds (=), are mixed with sulfur molecules. In B, under the influence of heat, sulfur reacts with carbon atoms close to the double bonds, and an indeterminate number of sulfur atoms (Sn) form linkages between adjacent chains. One mode of interlinking is shown, but the complete reaction mechanism is complex and still not fully understood.

The original elastomeric liquid is thus converted into a solid that will not flow, even when warm, because the molecules are now permanently tied together. Moreover, addition of a small amount of sulfur in various forms makes the rubber molecules sufficiently irregular that crystallization (and, hence, hardening at low temperatures) is greatly impeded. The linking process is often called curing or, more commonly, vulcanization (after Vulcan, the Roman god of fire). More accurately, the phenomenon is referred to as cross-linking or interlinking, because this is the essential chemical reaction.

All long, flexible polymer molecules naturally become entangled, like spaghetti. Although all such molecules will disentangle and flow under stress, their physical entanglements will act as temporary “interlinks,” especially when the molecules are long and slow-moving. It is therefore difficult at first sight to distinguish a covalently interlinked elastomer from one that is merely tangled or (as is described below) one that is held together by strong intermolecular associations. One means of distinguishing is to test whether the polymer dissolves in a compatible solvent or merely swells without dissolving. Covalently interlinked molecules do not dissolve. Interlinking is therefore necessary for good solvent resistance or for use at high temperatures.

Free-radical interlinking

Interlinking can be carried out with reagents other than sulfur—for example, by free-radical reactions that do not require the presence of C=C bonds. Free radicals are formed by irradiation with ultraviolet light, by electron-beam or nuclear radiation, or by the decomposition of unstable additives. In each case a hydrogen atom is torn away from the elastomer molecule, leaving a highly reactive carbon atom (the radical) that will couple with another carbon radical to create a stable C―C bond, interlinking different molecules. Even polyethylene and other fully saturated polymers can be interlinked by a free-radical process. However, for the curing of rubbery materials, sulfur is usually still the reagent of choice. Using accelerators and activators, the vulcanization reaction can be modified in various desirable ways, and sulfur interlinking also yields products of higher strength.

Molecular branching

Some rubbery solids are made by simultaneous polymerization and interlinking. If during polymerization each unit can add more than one other unit, then as the molecule increases in size it will branch out with many arms that will divide and interlink to create a densely cross-linked solid. The length of molecule between interlinks is small in this case, sometimes only a few carbon atoms long. Such materials are hard and inflexible; epoxy resins are an example. However, if molecular branching is made less frequent, then soft, rubbery materials will be produced. Rubbery products can be made in this way by casting—that is, by using low-viscosity liquid precursors with reactive end-groups. Examples are castable polyurethanes and silicones.