print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/elastomer
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Hydrogen bonding

Other rubbery materials consist of elastomers having strong intermolecular associations but no real chemical interlinks. Examples are molecules containing a few hydrogen-bonding groups. If the associations between the molecules are strong enough to prevent flow under moderate stresses, such materials can serve as practical rubbery solids. Also, because the weak interlinks give way at high temperatures, allowing the material to take on a new shape in response to pressure, they can be reprocessed and reused. For this reason these rubbery materials are called thermoplastic elastomers.

Block copolymers

Another type of intermolecular association is shown by thermoplastic block copolymers, where each molecule consists of long sequences, or blocks, of one unit followed by long sequences of another. Because different polymers are generally incompatible (i.e., do not dissolve into one another), blocks of the same type tend to aggregate and separate into small “domains.” This type of material can be exemplified by styrene-butadiene-styrene (SBS), a “tri-block” copolymer composed of butadiene repeating units in the centre portion of the chain and styrene units at the ends. Polystyrene and polybutadiene are incompatible, so that the polystyrene end-groups associate together to form domains of glassy polystyrene in a sea of elastic polybutadiene. The polybutadiene centre portions thus form a connected elastomeric network held together by rigid domains of polystyrene end-blocks, which are relatively stable up to the glass transition temperature of polystyrene (about 100 °C, or 212 °F). Thus, the material is a rubbery solid at normal temperatures, even though there are no chemical bonds interlinking the molecules. Above the Tg of polystyrene the aggregates can be sheared apart, and the material can be reprocessed and remolded.

Polymer blends

Yet another kind of thermoplastic elastomer is made by blending a specific elastomer with a specific plastic material. Santoprene (trademark) is an example. Santoprene consists of a mixture of approximately 60 parts ethylene-propylene-diene monomer copolymer (EPDM) with 40 parts polypropylene. A hydrocarbon oil, compatible with EPDM, and interlinking reagents for EPDM are also added. Because the polymers are molecularly incompatible, they form a fine, heterogeneous blend, the individual materials remaining as small, separate regions. During mixing, the EPDM portion becomes chemically interlinked to create a rubbery solid that can be molded (and remolded) at high temperatures, when the polypropylene component becomes soft and fluid. There is some uncertainty about the exact mechanism of elasticity in this material, because the polypropylene component appears to form continuous strands and should therefore make the mixture hard, not rubbery. Polymer blends are finding increasing use as elastomers because processing is simple and because they can be recycled.

Alan N. Gent