Study of the composition of the Earth

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://mainten.top/science/geology
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: geological science, geological sciences

Mineralogy

As a discipline, mineralogy has had close historical ties with geology. Minerals as basic constituents of rocks and ore deposits are obviously an integral aspect of geology. The problems and techniques of mineralogy, however, are distinct in many respects from those of the rest of geology, with the result that mineralogy has grown to be a large, complex discipline in itself.

About 3,000 distinct mineral species are recognized, but relatively few are important in the kinds of rocks that are abundant in the outer part of the Earth. Thus a few minerals such as the feldspars, quartz, and mica are the essential ingredients in granite and its near relatives. Limestones, which are widely distributed on all continents, consist largely of only two minerals, calcite and dolomite. Many rocks have a more complex mineralogy, and in some the mineral particles are so minute that they can be identified only through specialized techniques.

It is possible to identify an individual mineral in a specimen by examining and testing its physical properties. Determining the hardness of a mineral is the most practical way of identifying it. This can be done by using the Mohs scale of hardness, which lists 10 common minerals in their relative order of hardness: talc (softest with the scale number 1), gypsum (2), calcite (3), fluorite (4), apatite (5), orthoclase (6), quartz (7), topaz (8), corundum (9), and diamond (10). Harder minerals scratch softer ones, so that an unknown mineral can be readily positioned between minerals on the scale. Certain common objects that have been assigned hardness values roughly corresponding to those of the Mohs scale (e.g., fingernail [2.5], pocketknife blade [5.5], steel file [6.5]) are usually used in conjunction with the minerals on the scale for additional reference.

Other physical properties of minerals that aid in identification are crystal form, cleavage type, fracture, streak, lustre, colour, specific gravity, and density. In addition, the refractive index of a mineral can be determined with precisely calibrated immersion oils. Some minerals have distinctive properties that help to identify them. For example, carbonate minerals effervesce with dilute acids; halite is soluble in water and has a salty taste; fluorite (and about 100 other minerals) fluoresces in ultraviolet light; and uranium-bearing minerals are radioactive.

The science of crystallography is concerned with the geometric properties and internal structure of crystals. Because minerals are generally crystalline, crystallography is an essential aspect of mineralogy. Investigators in the field may use a reflecting goniometer that measures angles between crystal faces to help determine the crystal system to which a mineral belongs. Another instrument that they frequently employ is the X-ray diffractometer, which makes use of the fact that X-rays, when passing through a mineral specimen, are diffracted at regular angles. The paths of the diffracted rays are recorded on photographic film, and the positions and intensities of the resulting diffraction lines on the film provide a particular pattern. Every mineral has its own unique diffraction pattern, so crystallographers are able to determine not only the crystal structure of a mineral but the type of mineral as well.

When a complex substance such as a magma crystallizes to form igneous rock, the grains of different constituent minerals grow together and mutually interfere, with the result that they do not retain their externally recognizable crystal form. To study the minerals in such a rock, the mineralogist uses a petrographic microscope constructed for viewing thin sections of the rock, which are ground uniformly to a thickness of about 0.03 millimetre, in light polarized by two polarizing prisms in the microscope. If the rock is crystalline, its essential minerals can be determined by their peculiar optical properties as revealed in transmitted light under magnification, provided that the individual crystal grains can be distinguished. Opaque minerals, such as those with a high content of metallic elements, require a technique employing reflected light from polished surfaces. This kind of microscopic analysis has particular application to metallic ore minerals. The polarizing microscope, however, has a lower limit to the size of grains that can be distinguished with the eye; even the best microscopes cannot resolve grains less than about 0.5 micrometre (0.0005 millimetre) in diameter. For higher magnifications the mineralogist uses an electron microscope, which produces images with diameters enlarged tens of thousands of times.

The methods described above are based on a study of the physical properties of minerals. Another important area of mineralogy is concerned with the chemical composition of minerals. The primary instrument used is the electron microprobe. Here a beam of electrons is focused on a thin section of rock that has been highly polished and coated with carbon. The electron beam can be narrowed to a diameter of about one micrometre and thus can be focused on a single grain of a mineral, which can be observed with an ordinary optical microscope system. The electrons cause the atoms in the mineral under examination to emit diagnostic X-rays, the intensity and concentration of which are measured by a computer. Besides spot analysis, this method allows a mineral to be traversed for possible chemical zoning. Moreover, the concentration and relative distribution of elements such as magnesium and iron across the boundary of two coexisting minerals like garnet and pyroxene can be used with thermodynamic data to calculate the temperature and pressure at which minerals of this type crystallize.

Although the major concern of mineralogy is to describe and classify the geometrical, chemical, and physical properties of minerals, it is also concerned with their origin. Physical chemistry and thermodynamics are basic tools for understanding mineral origin. Some of the observational data of mineralogy are concerned with the behaviour of solutions in precipitating crystalline materials under controlled conditions in the laboratory. Certain minerals can be created synthetically under conditions in which temperature and concentration of solutions are carefully monitored. Other experimental methods include study of the transformation of solids at high temperatures and pressures to yield specific minerals or assemblages of minerals. Experimental data obtained in the laboratory, coupled with chemical and physical theory, enable the conditions of origin of many naturally occurring minerals to be inferred.